3.2.33 \(\int \frac {\tanh ^{-1}(a x)^3}{x^3 (c+a c x)} \, dx\) [133]

Optimal. Leaf size=305 \[ \frac {3 a^2 \tanh ^{-1}(a x)^2}{2 c}-\frac {3 a \tanh ^{-1}(a x)^2}{2 c x}-\frac {a^2 \tanh ^{-1}(a x)^3}{2 c}-\frac {\tanh ^{-1}(a x)^3}{2 c x^2}+\frac {a \tanh ^{-1}(a x)^3}{c x}+\frac {3 a^2 \tanh ^{-1}(a x) \log \left (2-\frac {2}{1+a x}\right )}{c}-\frac {3 a^2 \tanh ^{-1}(a x)^2 \log \left (2-\frac {2}{1+a x}\right )}{c}+\frac {a^2 \tanh ^{-1}(a x)^3 \log \left (2-\frac {2}{1+a x}\right )}{c}-\frac {3 a^2 \text {PolyLog}\left (2,-1+\frac {2}{1+a x}\right )}{2 c}+\frac {3 a^2 \tanh ^{-1}(a x) \text {PolyLog}\left (2,-1+\frac {2}{1+a x}\right )}{c}-\frac {3 a^2 \tanh ^{-1}(a x)^2 \text {PolyLog}\left (2,-1+\frac {2}{1+a x}\right )}{2 c}+\frac {3 a^2 \text {PolyLog}\left (3,-1+\frac {2}{1+a x}\right )}{2 c}-\frac {3 a^2 \tanh ^{-1}(a x) \text {PolyLog}\left (3,-1+\frac {2}{1+a x}\right )}{2 c}-\frac {3 a^2 \text {PolyLog}\left (4,-1+\frac {2}{1+a x}\right )}{4 c} \]

[Out]

3/2*a^2*arctanh(a*x)^2/c-3/2*a*arctanh(a*x)^2/c/x-1/2*a^2*arctanh(a*x)^3/c-1/2*arctanh(a*x)^3/c/x^2+a*arctanh(
a*x)^3/c/x+3*a^2*arctanh(a*x)*ln(2-2/(a*x+1))/c-3*a^2*arctanh(a*x)^2*ln(2-2/(a*x+1))/c+a^2*arctanh(a*x)^3*ln(2
-2/(a*x+1))/c-3/2*a^2*polylog(2,-1+2/(a*x+1))/c+3*a^2*arctanh(a*x)*polylog(2,-1+2/(a*x+1))/c-3/2*a^2*arctanh(a
*x)^2*polylog(2,-1+2/(a*x+1))/c+3/2*a^2*polylog(3,-1+2/(a*x+1))/c-3/2*a^2*arctanh(a*x)*polylog(3,-1+2/(a*x+1))
/c-3/4*a^2*polylog(4,-1+2/(a*x+1))/c

________________________________________________________________________________________

Rubi [A]
time = 0.52, antiderivative size = 305, normalized size of antiderivative = 1.00, number of steps used = 18, number of rules used = 10, integrand size = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.556, Rules used = {6081, 6037, 6129, 6135, 6079, 2497, 6095, 6203, 6745, 6207} \begin {gather*} -\frac {3 a^2 \text {Li}_2\left (\frac {2}{a x+1}-1\right )}{2 c}+\frac {3 a^2 \text {Li}_3\left (\frac {2}{a x+1}-1\right )}{2 c}-\frac {3 a^2 \text {Li}_4\left (\frac {2}{a x+1}-1\right )}{4 c}-\frac {3 a^2 \text {Li}_2\left (\frac {2}{a x+1}-1\right ) \tanh ^{-1}(a x)^2}{2 c}+\frac {3 a^2 \text {Li}_2\left (\frac {2}{a x+1}-1\right ) \tanh ^{-1}(a x)}{c}-\frac {3 a^2 \text {Li}_3\left (\frac {2}{a x+1}-1\right ) \tanh ^{-1}(a x)}{2 c}-\frac {a^2 \tanh ^{-1}(a x)^3}{2 c}+\frac {3 a^2 \tanh ^{-1}(a x)^2}{2 c}+\frac {a^2 \log \left (2-\frac {2}{a x+1}\right ) \tanh ^{-1}(a x)^3}{c}-\frac {3 a^2 \log \left (2-\frac {2}{a x+1}\right ) \tanh ^{-1}(a x)^2}{c}+\frac {3 a^2 \log \left (2-\frac {2}{a x+1}\right ) \tanh ^{-1}(a x)}{c}-\frac {\tanh ^{-1}(a x)^3}{2 c x^2}+\frac {a \tanh ^{-1}(a x)^3}{c x}-\frac {3 a \tanh ^{-1}(a x)^2}{2 c x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[ArcTanh[a*x]^3/(x^3*(c + a*c*x)),x]

[Out]

(3*a^2*ArcTanh[a*x]^2)/(2*c) - (3*a*ArcTanh[a*x]^2)/(2*c*x) - (a^2*ArcTanh[a*x]^3)/(2*c) - ArcTanh[a*x]^3/(2*c
*x^2) + (a*ArcTanh[a*x]^3)/(c*x) + (3*a^2*ArcTanh[a*x]*Log[2 - 2/(1 + a*x)])/c - (3*a^2*ArcTanh[a*x]^2*Log[2 -
 2/(1 + a*x)])/c + (a^2*ArcTanh[a*x]^3*Log[2 - 2/(1 + a*x)])/c - (3*a^2*PolyLog[2, -1 + 2/(1 + a*x)])/(2*c) +
(3*a^2*ArcTanh[a*x]*PolyLog[2, -1 + 2/(1 + a*x)])/c - (3*a^2*ArcTanh[a*x]^2*PolyLog[2, -1 + 2/(1 + a*x)])/(2*c
) + (3*a^2*PolyLog[3, -1 + 2/(1 + a*x)])/(2*c) - (3*a^2*ArcTanh[a*x]*PolyLog[3, -1 + 2/(1 + a*x)])/(2*c) - (3*
a^2*PolyLog[4, -1 + 2/(1 + a*x)])/(4*c)

Rule 2497

Int[Log[u_]*(Pq_)^(m_.), x_Symbol] :> With[{C = FullSimplify[Pq^m*((1 - u)/D[u, x])]}, Simp[C*PolyLog[2, 1 - u
], x] /; FreeQ[C, x]] /; IntegerQ[m] && PolyQ[Pq, x] && RationalFunctionQ[u, x] && LeQ[RationalFunctionExponen
ts[u, x][[2]], Expon[Pq, x]]

Rule 6037

Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcTanh[c*
x^n])^p/(m + 1)), x] - Dist[b*c*n*(p/(m + 1)), Int[x^(m + n)*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))
), x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] && IntegerQ[m])) && NeQ[m, -1
]

Rule 6079

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_))), x_Symbol] :> Simp[(a + b*ArcTanh[c*x
])^p*(Log[2 - 2/(1 + e*(x/d))]/d), x] - Dist[b*c*(p/d), Int[(a + b*ArcTanh[c*x])^(p - 1)*(Log[2 - 2/(1 + e*(x/
d))]/(1 - c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]

Rule 6081

Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)), x_Symbol] :> Dist[1/d,
Int[(f*x)^m*(a + b*ArcTanh[c*x])^p, x], x] - Dist[e/(d*f), Int[(f*x)^(m + 1)*((a + b*ArcTanh[c*x])^p/(d + e*x)
), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] && LtQ[m, -1]

Rule 6095

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c*x])^(p
 + 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1]

Rule 6129

Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Dist[1/d
, Int[(f*x)^m*(a + b*ArcTanh[c*x])^p, x], x] - Dist[e/(d*f^2), Int[(f*x)^(m + 2)*((a + b*ArcTanh[c*x])^p/(d +
e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && LtQ[m, -1]

Rule 6135

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Simp[(a + b*ArcTanh[c
*x])^(p + 1)/(b*d*(p + 1)), x] + Dist[1/d, Int[(a + b*ArcTanh[c*x])^p/(x*(1 + c*x)), x], x] /; FreeQ[{a, b, c,
 d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0]

Rule 6203

Int[(Log[u_]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTan
h[c*x])^p*(PolyLog[2, 1 - u]/(2*c*d)), x] - Dist[b*(p/2), Int[(a + b*ArcTanh[c*x])^(p - 1)*(PolyLog[2, 1 - u]/
(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1 - 2
/(1 + c*x))^2, 0]

Rule 6207

Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*PolyLog[k_, u_])/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-(a
+ b*ArcTanh[c*x])^p)*(PolyLog[k + 1, u]/(2*c*d)), x] + Dist[b*(p/2), Int[(a + b*ArcTanh[c*x])^(p - 1)*(PolyLog
[k + 1, u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2
- (1 - 2/(1 + c*x))^2, 0]

Rule 6745

Int[(u_)*PolyLog[n_, v_], x_Symbol] :> With[{w = DerivativeDivides[v, u*v, x]}, Simp[w*PolyLog[n + 1, v], x] /
;  !FalseQ[w]] /; FreeQ[n, x]

Rubi steps

\begin {align*} \int \frac {\tanh ^{-1}(a x)^3}{x^3 (c+a c x)} \, dx &=-\left (a \int \frac {\tanh ^{-1}(a x)^3}{x^2 (c+a c x)} \, dx\right )+\frac {\int \frac {\tanh ^{-1}(a x)^3}{x^3} \, dx}{c}\\ &=-\frac {\tanh ^{-1}(a x)^3}{2 c x^2}+a^2 \int \frac {\tanh ^{-1}(a x)^3}{x (c+a c x)} \, dx-\frac {a \int \frac {\tanh ^{-1}(a x)^3}{x^2} \, dx}{c}+\frac {(3 a) \int \frac {\tanh ^{-1}(a x)^2}{x^2 \left (1-a^2 x^2\right )} \, dx}{2 c}\\ &=-\frac {\tanh ^{-1}(a x)^3}{2 c x^2}+\frac {a \tanh ^{-1}(a x)^3}{c x}+\frac {a^2 \tanh ^{-1}(a x)^3 \log \left (2-\frac {2}{1+a x}\right )}{c}+\frac {(3 a) \int \frac {\tanh ^{-1}(a x)^2}{x^2} \, dx}{2 c}-\frac {\left (3 a^2\right ) \int \frac {\tanh ^{-1}(a x)^2}{x \left (1-a^2 x^2\right )} \, dx}{c}+\frac {\left (3 a^3\right ) \int \frac {\tanh ^{-1}(a x)^2}{1-a^2 x^2} \, dx}{2 c}-\frac {\left (3 a^3\right ) \int \frac {\tanh ^{-1}(a x)^2 \log \left (2-\frac {2}{1+a x}\right )}{1-a^2 x^2} \, dx}{c}\\ &=-\frac {3 a \tanh ^{-1}(a x)^2}{2 c x}-\frac {a^2 \tanh ^{-1}(a x)^3}{2 c}-\frac {\tanh ^{-1}(a x)^3}{2 c x^2}+\frac {a \tanh ^{-1}(a x)^3}{c x}+\frac {a^2 \tanh ^{-1}(a x)^3 \log \left (2-\frac {2}{1+a x}\right )}{c}-\frac {3 a^2 \tanh ^{-1}(a x)^2 \text {Li}_2\left (-1+\frac {2}{1+a x}\right )}{2 c}+\frac {\left (3 a^2\right ) \int \frac {\tanh ^{-1}(a x)}{x \left (1-a^2 x^2\right )} \, dx}{c}-\frac {\left (3 a^2\right ) \int \frac {\tanh ^{-1}(a x)^2}{x (1+a x)} \, dx}{c}+\frac {\left (3 a^3\right ) \int \frac {\tanh ^{-1}(a x) \text {Li}_2\left (-1+\frac {2}{1+a x}\right )}{1-a^2 x^2} \, dx}{c}\\ &=\frac {3 a^2 \tanh ^{-1}(a x)^2}{2 c}-\frac {3 a \tanh ^{-1}(a x)^2}{2 c x}-\frac {a^2 \tanh ^{-1}(a x)^3}{2 c}-\frac {\tanh ^{-1}(a x)^3}{2 c x^2}+\frac {a \tanh ^{-1}(a x)^3}{c x}-\frac {3 a^2 \tanh ^{-1}(a x)^2 \log \left (2-\frac {2}{1+a x}\right )}{c}+\frac {a^2 \tanh ^{-1}(a x)^3 \log \left (2-\frac {2}{1+a x}\right )}{c}-\frac {3 a^2 \tanh ^{-1}(a x)^2 \text {Li}_2\left (-1+\frac {2}{1+a x}\right )}{2 c}-\frac {3 a^2 \tanh ^{-1}(a x) \text {Li}_3\left (-1+\frac {2}{1+a x}\right )}{2 c}+\frac {\left (3 a^2\right ) \int \frac {\tanh ^{-1}(a x)}{x (1+a x)} \, dx}{c}+\frac {\left (3 a^3\right ) \int \frac {\text {Li}_3\left (-1+\frac {2}{1+a x}\right )}{1-a^2 x^2} \, dx}{2 c}+\frac {\left (6 a^3\right ) \int \frac {\tanh ^{-1}(a x) \log \left (2-\frac {2}{1+a x}\right )}{1-a^2 x^2} \, dx}{c}\\ &=\frac {3 a^2 \tanh ^{-1}(a x)^2}{2 c}-\frac {3 a \tanh ^{-1}(a x)^2}{2 c x}-\frac {a^2 \tanh ^{-1}(a x)^3}{2 c}-\frac {\tanh ^{-1}(a x)^3}{2 c x^2}+\frac {a \tanh ^{-1}(a x)^3}{c x}+\frac {3 a^2 \tanh ^{-1}(a x) \log \left (2-\frac {2}{1+a x}\right )}{c}-\frac {3 a^2 \tanh ^{-1}(a x)^2 \log \left (2-\frac {2}{1+a x}\right )}{c}+\frac {a^2 \tanh ^{-1}(a x)^3 \log \left (2-\frac {2}{1+a x}\right )}{c}+\frac {3 a^2 \tanh ^{-1}(a x) \text {Li}_2\left (-1+\frac {2}{1+a x}\right )}{c}-\frac {3 a^2 \tanh ^{-1}(a x)^2 \text {Li}_2\left (-1+\frac {2}{1+a x}\right )}{2 c}-\frac {3 a^2 \tanh ^{-1}(a x) \text {Li}_3\left (-1+\frac {2}{1+a x}\right )}{2 c}-\frac {3 a^2 \text {Li}_4\left (-1+\frac {2}{1+a x}\right )}{4 c}-\frac {\left (3 a^3\right ) \int \frac {\log \left (2-\frac {2}{1+a x}\right )}{1-a^2 x^2} \, dx}{c}-\frac {\left (3 a^3\right ) \int \frac {\text {Li}_2\left (-1+\frac {2}{1+a x}\right )}{1-a^2 x^2} \, dx}{c}\\ &=\frac {3 a^2 \tanh ^{-1}(a x)^2}{2 c}-\frac {3 a \tanh ^{-1}(a x)^2}{2 c x}-\frac {a^2 \tanh ^{-1}(a x)^3}{2 c}-\frac {\tanh ^{-1}(a x)^3}{2 c x^2}+\frac {a \tanh ^{-1}(a x)^3}{c x}+\frac {3 a^2 \tanh ^{-1}(a x) \log \left (2-\frac {2}{1+a x}\right )}{c}-\frac {3 a^2 \tanh ^{-1}(a x)^2 \log \left (2-\frac {2}{1+a x}\right )}{c}+\frac {a^2 \tanh ^{-1}(a x)^3 \log \left (2-\frac {2}{1+a x}\right )}{c}-\frac {3 a^2 \text {Li}_2\left (-1+\frac {2}{1+a x}\right )}{2 c}+\frac {3 a^2 \tanh ^{-1}(a x) \text {Li}_2\left (-1+\frac {2}{1+a x}\right )}{c}-\frac {3 a^2 \tanh ^{-1}(a x)^2 \text {Li}_2\left (-1+\frac {2}{1+a x}\right )}{2 c}+\frac {3 a^2 \text {Li}_3\left (-1+\frac {2}{1+a x}\right )}{2 c}-\frac {3 a^2 \tanh ^{-1}(a x) \text {Li}_3\left (-1+\frac {2}{1+a x}\right )}{2 c}-\frac {3 a^2 \text {Li}_4\left (-1+\frac {2}{1+a x}\right )}{4 c}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.39, size = 222, normalized size = 0.73 \begin {gather*} \frac {a^2 \left (-8 i \pi ^3+\pi ^4+96 \tanh ^{-1}(a x)^2-\frac {96 \tanh ^{-1}(a x)^2}{a x}+96 \tanh ^{-1}(a x)^3-\frac {32 \tanh ^{-1}(a x)^3}{a^2 x^2}+\frac {64 \tanh ^{-1}(a x)^3}{a x}-32 \tanh ^{-1}(a x)^4+192 \tanh ^{-1}(a x) \log \left (1-e^{-2 \tanh ^{-1}(a x)}\right )-192 \tanh ^{-1}(a x)^2 \log \left (1-e^{2 \tanh ^{-1}(a x)}\right )+64 \tanh ^{-1}(a x)^3 \log \left (1-e^{2 \tanh ^{-1}(a x)}\right )-96 \text {PolyLog}\left (2,e^{-2 \tanh ^{-1}(a x)}\right )+96 \left (-2+\tanh ^{-1}(a x)\right ) \tanh ^{-1}(a x) \text {PolyLog}\left (2,e^{2 \tanh ^{-1}(a x)}\right )+96 \text {PolyLog}\left (3,e^{2 \tanh ^{-1}(a x)}\right )-96 \tanh ^{-1}(a x) \text {PolyLog}\left (3,e^{2 \tanh ^{-1}(a x)}\right )+48 \text {PolyLog}\left (4,e^{2 \tanh ^{-1}(a x)}\right )\right )}{64 c} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[ArcTanh[a*x]^3/(x^3*(c + a*c*x)),x]

[Out]

(a^2*((-8*I)*Pi^3 + Pi^4 + 96*ArcTanh[a*x]^2 - (96*ArcTanh[a*x]^2)/(a*x) + 96*ArcTanh[a*x]^3 - (32*ArcTanh[a*x
]^3)/(a^2*x^2) + (64*ArcTanh[a*x]^3)/(a*x) - 32*ArcTanh[a*x]^4 + 192*ArcTanh[a*x]*Log[1 - E^(-2*ArcTanh[a*x])]
 - 192*ArcTanh[a*x]^2*Log[1 - E^(2*ArcTanh[a*x])] + 64*ArcTanh[a*x]^3*Log[1 - E^(2*ArcTanh[a*x])] - 96*PolyLog
[2, E^(-2*ArcTanh[a*x])] + 96*(-2 + ArcTanh[a*x])*ArcTanh[a*x]*PolyLog[2, E^(2*ArcTanh[a*x])] + 96*PolyLog[3,
E^(2*ArcTanh[a*x])] - 96*ArcTanh[a*x]*PolyLog[3, E^(2*ArcTanh[a*x])] + 48*PolyLog[4, E^(2*ArcTanh[a*x])]))/(64
*c)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(601\) vs. \(2(287)=574\).
time = 32.82, size = 602, normalized size = 1.97

method result size
derivativedivides \(a^{2} \left (-\frac {\arctanh \left (a x \right )^{2} \left (a x \arctanh \left (a x \right )-\arctanh \left (a x \right )-3 a x \right ) \left (a x -1\right )}{2 c \,a^{2} x^{2}}-\frac {\arctanh \left (a x \right )^{4}}{2 c}+\frac {\arctanh \left (a x \right )^{3} \ln \left (1+\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {3 \arctanh \left (a x \right )^{2} \polylog \left (2, -\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}-\frac {6 \arctanh \left (a x \right ) \polylog \left (3, -\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {6 \polylog \left (4, -\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {\arctanh \left (a x \right )^{3} \ln \left (1-\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {3 \arctanh \left (a x \right )^{2} \polylog \left (2, \frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}-\frac {6 \arctanh \left (a x \right ) \polylog \left (3, \frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {6 \polylog \left (4, \frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}-\frac {3 \arctanh \left (a x \right )^{2}}{c}+\frac {3 \arctanh \left (a x \right ) \ln \left (1+\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {3 \polylog \left (2, -\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {3 \arctanh \left (a x \right ) \ln \left (1-\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {3 \polylog \left (2, \frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {2 \arctanh \left (a x \right )^{3}}{c}-\frac {3 \arctanh \left (a x \right )^{2} \ln \left (1+\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}-\frac {6 \arctanh \left (a x \right ) \polylog \left (2, -\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {6 \polylog \left (3, -\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}-\frac {3 \arctanh \left (a x \right )^{2} \ln \left (1-\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}-\frac {6 \arctanh \left (a x \right ) \polylog \left (2, \frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {6 \polylog \left (3, \frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}\right )\) \(602\)
default \(a^{2} \left (-\frac {\arctanh \left (a x \right )^{2} \left (a x \arctanh \left (a x \right )-\arctanh \left (a x \right )-3 a x \right ) \left (a x -1\right )}{2 c \,a^{2} x^{2}}-\frac {\arctanh \left (a x \right )^{4}}{2 c}+\frac {\arctanh \left (a x \right )^{3} \ln \left (1+\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {3 \arctanh \left (a x \right )^{2} \polylog \left (2, -\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}-\frac {6 \arctanh \left (a x \right ) \polylog \left (3, -\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {6 \polylog \left (4, -\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {\arctanh \left (a x \right )^{3} \ln \left (1-\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {3 \arctanh \left (a x \right )^{2} \polylog \left (2, \frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}-\frac {6 \arctanh \left (a x \right ) \polylog \left (3, \frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {6 \polylog \left (4, \frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}-\frac {3 \arctanh \left (a x \right )^{2}}{c}+\frac {3 \arctanh \left (a x \right ) \ln \left (1+\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {3 \polylog \left (2, -\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {3 \arctanh \left (a x \right ) \ln \left (1-\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {3 \polylog \left (2, \frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {2 \arctanh \left (a x \right )^{3}}{c}-\frac {3 \arctanh \left (a x \right )^{2} \ln \left (1+\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}-\frac {6 \arctanh \left (a x \right ) \polylog \left (2, -\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {6 \polylog \left (3, -\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}-\frac {3 \arctanh \left (a x \right )^{2} \ln \left (1-\frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}-\frac {6 \arctanh \left (a x \right ) \polylog \left (2, \frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}+\frac {6 \polylog \left (3, \frac {a x +1}{\sqrt {-a^{2} x^{2}+1}}\right )}{c}\right )\) \(602\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(a*x)^3/x^3/(a*c*x+c),x,method=_RETURNVERBOSE)

[Out]

a^2*(-1/2/c*arctanh(a*x)^2*(a*x*arctanh(a*x)-arctanh(a*x)-3*a*x)*(a*x-1)/a^2/x^2-1/2/c*arctanh(a*x)^4+1/c*arct
anh(a*x)^3*ln(1+(a*x+1)/(-a^2*x^2+1)^(1/2))+3/c*arctanh(a*x)^2*polylog(2,-(a*x+1)/(-a^2*x^2+1)^(1/2))-6/c*arct
anh(a*x)*polylog(3,-(a*x+1)/(-a^2*x^2+1)^(1/2))+6/c*polylog(4,-(a*x+1)/(-a^2*x^2+1)^(1/2))+1/c*arctanh(a*x)^3*
ln(1-(a*x+1)/(-a^2*x^2+1)^(1/2))+3/c*arctanh(a*x)^2*polylog(2,(a*x+1)/(-a^2*x^2+1)^(1/2))-6/c*arctanh(a*x)*pol
ylog(3,(a*x+1)/(-a^2*x^2+1)^(1/2))+6/c*polylog(4,(a*x+1)/(-a^2*x^2+1)^(1/2))-3/c*arctanh(a*x)^2+3/c*arctanh(a*
x)*ln(1+(a*x+1)/(-a^2*x^2+1)^(1/2))+3/c*polylog(2,-(a*x+1)/(-a^2*x^2+1)^(1/2))+3/c*arctanh(a*x)*ln(1-(a*x+1)/(
-a^2*x^2+1)^(1/2))+3/c*polylog(2,(a*x+1)/(-a^2*x^2+1)^(1/2))+2*arctanh(a*x)^3/c-3/c*arctanh(a*x)^2*ln(1+(a*x+1
)/(-a^2*x^2+1)^(1/2))-6/c*arctanh(a*x)*polylog(2,-(a*x+1)/(-a^2*x^2+1)^(1/2))+6/c*polylog(3,-(a*x+1)/(-a^2*x^2
+1)^(1/2))-3/c*arctanh(a*x)^2*ln(1-(a*x+1)/(-a^2*x^2+1)^(1/2))-6/c*arctanh(a*x)*polylog(2,(a*x+1)/(-a^2*x^2+1)
^(1/2))+6/c*polylog(3,(a*x+1)/(-a^2*x^2+1)^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(a*x)^3/x^3/(a*c*x+c),x, algorithm="maxima")

[Out]

1/16*(2*a^2*x^2*log(a*x + 1) - 2*a*x + 1)*log(-a*x + 1)^3/(c*x^2) - 1/8*integrate(-1/2*(2*(a*x - 1)*log(a*x +
1)^3 - 6*(a*x - 1)*log(a*x + 1)^2*log(-a*x + 1) + 3*(2*a^3*x^3 + a^2*x^2 - a*x - 2*(a^4*x^4 + a^3*x^3 - a*x +
1)*log(a*x + 1))*log(-a*x + 1)^2)/(a^2*c*x^5 - c*x^3), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(a*x)^3/x^3/(a*c*x+c),x, algorithm="fricas")

[Out]

integral(arctanh(a*x)^3/(a*c*x^4 + c*x^3), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {\operatorname {atanh}^{3}{\left (a x \right )}}{a x^{4} + x^{3}}\, dx}{c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(a*x)**3/x**3/(a*c*x+c),x)

[Out]

Integral(atanh(a*x)**3/(a*x**4 + x**3), x)/c

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(a*x)^3/x^3/(a*c*x+c),x, algorithm="giac")

[Out]

integrate(arctanh(a*x)^3/((a*c*x + c)*x^3), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\mathrm {atanh}\left (a\,x\right )}^3}{x^3\,\left (c+a\,c\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atanh(a*x)^3/(x^3*(c + a*c*x)),x)

[Out]

int(atanh(a*x)^3/(x^3*(c + a*c*x)), x)

________________________________________________________________________________________